The Meth Project and Teen Meth Use New Estimates from the National and State Youth Risk Behavior Surveys

D. Mark Anderson^{*} Department of Agricultural Economics and Economics Montana State University P.O. Box 172920 Bozeman, MT 59717-2920

David Elsea Department of Agricultural and Applied Economics University of Wisconsin - Madison 427 Lorch Street, Taylor Hall Madison, WI 53706-1503

Abstract

Anderson (2010) used data from the Youth Risk Behavior Surveys to estimate the effect of the Montana Meth Project, an anti-methamphetamine advertising campaign, on meth use among high school students. He found little evidence that the campaign actually curbed meth use. In this note, we use data from the national and state Youth Risk Behavior Surveys for the period 1999 through 2011 to build upon the work of Anderson (2010). During this period, a total of eight states adopted anti-meth advertising campaigns. While our results are typically consistent with those of Anderson (2010), we do find some evidence that the Meth Project may have reduced meth use among white high school students.

JEL Codes: H75, I18, K42, M37 Key Words: Meth Project, Methamphetamine Use, Youth Risky Behavior, Anti-Drug Campaign

^{*} Corresponding author. Email: <u>dwight.anderson@montana.edu</u>. Phone: 406-366-0921. The authors would like to thank Dean Anderson, Daniel Rees, Randy Rucker, Carly Urban, and Mary Beth Walker for comments and suggestions. The authors would also like to thank Lisa Whittle and numerous state YRBS coordinators for their help with obtaining the data used in this paper. The authors have no financial or personal relationships between themselves and others that might bias their work.

"We brought the Meth Project to Georgia to stem the growing methamphetamine epidemic in our state, and we are seeing impressive results." --Johnny Isakson, Republican Senator of Georgia

1. INTRODUCTION

In 2005, Montana adopted an anti-methamphetamine advertising campaign known as the Meth Project. The goal of this campaign is to reduce methamphetamine (meth) use by increasing the perceived risk and decreasing the perceived benefit of trying meth, promoting dialogue about meth between parents and teens, and stigmatizing use (Siebel and Mange 2009). The campaign relies primarily on graphic print impressions, radio and television ads, and highway billboards. The ads consist of disturbing images such as addicts tearing off their own skin, young girls selling their bodies to older men for meth, and meth-crazed teens beating their parents for money.¹

Due to the apparent success of Montana's campaign, seven additional states have adopted their own Meth Projects (see Table 1).² In 2010, *Barron's* magazine listed the Meth Project as the third most effective philanthropy in the world (Siebel Scholars 2010). However, after accounting for preexisting downward trends in meth use, Anderson (2010) found little evidence of a relationship between the Montana Meth Project and meth use among high school students.³

Because of the focus on Montana, it is unclear whether the results from Anderson (2010) generalize. In an effort to examine whether the Meth Project was more successful elsewhere, we extend the Anderson (2010) analysis through 2011. Similar to Anderson (2010), after

¹ To view the Meth Project ads, visit <u>http://montana.methproject.org/Our-Work/view-ads.php</u>.

² The editorial board of the Star-Tribune, a major newspaper in Wyoming, was quoted as saying, "...the fact that Wyoming and six other states have launched programs similar to the Montana Meth Project shows plenty of people see it as something worth emulating (Star-Tribune Editorial Board 2010)."

³ See Anderson (2010) for a detailed description of the Montana Meth Project. See Dobkin and Nicosia (2009) and Cunningham and Finlay (2013) for research on supply-side meth shocks.

accounting for preexisting downward trends in meth use, we find little evidence of a relationship between the Meth Project and meth use within our full sample. However, we do find some evidence that the Meth Project may have decreased meth use among white high school students.

2. DATA AND EMPIRICAL MODEL

The data for this study come from the national and state YRBS and cover the period 1999 through 2011.⁴ The national YRBS is conducted biennially by the Centers for Disease Control and Prevention (CDC) and is representative of the population of U.S. high school students.⁵ The state surveys are also school-based and mirror the national surveys in terms of content. Although the state surveys are coordinated by the CDC, they are typically administered by state education and health agencies.

Our analysis uses both of these data sources so that identification comes from as many Meth Project adoptions as possible. While intended to be nationally representative, not all 50 states contribute data to the national YRBS in any given year.⁶ Between 1999 and 2011, 11 states contributed data to the national YRBS every year and six states contributed data before and after the adoption of their Meth Project (Arizona, Colorado, Georgia, Hawaii, Idaho, and Illinois). Appendix Table 1 illustrates the number of observations by year and state in the national YRBS analysis.

⁴ Anderson (2010) used national YRBS data through 2007 and Montana YRBS data through 2009. It is not possible to observe meth use prior to 1999 because this was the first year the YRBS asked respondents about meth use.

⁵ Federal agencies use the national YRBS data to follow trends in adolescent behaviors such as eating and exercise habits, violence, sexuality, and substance use. These data have also been used by researchers to evaluate the impacts of state-level policies. For examples, see Tremblay and Ling (2005), Carpenter and Cook (2008), Carpenter and Stehr (2008), Cawley et al. (2007), and Anderson (2014).

⁶ In order to link respondents to their state of residence, we obtained the restricted-use versions of the national YRBS.

Most states conducted their own version of the YRBS at some point between 1999 and 2011. We have obtained data from 45 states, seven of which conducted surveys before and after the adoption of their Meth Project (Arizona, Colorado, Georgia, Idaho, Illinois, Montana, and Wyoming).⁷ Appendix Table 2 illustrates the number of observations each state contributed to the state YRBS analysis. In combination, the national and state YRBS data cover all states and the District of Columbia. All eight states with Meth Projects contributed data before and after the adoption of their anti-meth campaign.⁸ Table 2 provides descriptive statistics for the national and state YRBS samples. Means are reported by whether a Meth Project was present in the respondent's state of residence during the year of the interview. On average, Meth Project states have lower rates of meth use, a lower percentage of black students enrolled in their high schools, and higher unemployment rates.

Figure 1 presents trends in meth use based on the combined national and state YRBS data. It is apparent that meth use has been trending smoothly downward in all states during the period under study. If the Meth Project had an effect, then we would expect to see an acceleration of this trend as states began adopting the campaign. Figure 1 provides no evidence to support this hypothesis. If anything, the decrease in meth use appears to have slowed among adopting states after 2005, the inaugural year of the Meth Project in Montana.

To examine the relationship between the Meth Project and meth use among youths in a more rigorous fashion, we exploit the temporal and spatial variation in the adoption of these

⁷ Roughly half of these states have given the CDC permission to release their data. To obtain the remaining data, direct requests were made to each state.

⁸ In the combined national and state YRBS sample, we have full coverage for 5 of the 8 Meth Project states. Idaho did not participate in the national or state YRBS in 1999 and Colorado did not participate in the national or state YRBS in 1999, 2003, and 2007. In addition, we only have data on Hawaii for 1999 and 2009 from the national YRBS. Hawaii conducted a state YRBS in 1999, 2005, 2007, 2009, and 2011. Unfortunately, our attempts at obtaining these data were rebuffed.

campaigns and estimate a standard difference-in-differences model. Specifically, our estimating equation is:

(1)
$$Meth \ use_{ist} = \beta_0 + \beta_1 Meth \ Project_{st} + X_{ist}\beta_2 + v_s + w_t + \Theta_s \cdot t + \varepsilon_{ist_s}$$

where *i* indexes individuals, *s* indexes states, and *t* indexes years. The dependent variable, *Meth use*_{*ist*}, is equal to 1 if respondent *i* reported having ever used meth, and is equal to 0 otherwise. The vector X_{ist} includes individual-level controls for age, sex, race and grade, and the unemployment rate in respondent *i*'s state.⁹ The vectors v_s and w_t represent state and year fixed effects, respectively, and state-specific linear time trends are represented by $\Theta_s \cdot t$. The variable of interest, *Meth Project*_{st}, is an indicator for whether a Meth Project had been implemented by state *s* by year t.¹⁰ All regressions are estimated as linear probability models and standard errors are corrected for clustering at the state level (Bertrand et al. 2004).¹¹

3. RESULTS

Table 3 presents estimates of equation (1) for the national, state, and combined YRBS samples. For each sample, results from specifications with and without state-specific linear time trends are presented. Figure 1 clearly illustrates the importance of controlling for preexisting trends in meth use.

⁹ The regressions based on the combined YRBS sample also include a dummy variable that indicates whether the respondent was sampled in the national YRBS or the state YRBS.

¹⁰ This variable takes on fractional values during the year in which a Meth Project was adopted.

¹¹ Logit and probit models yielded similar results.

Using the state YRBS data and a specification without state-specific linear time trends, the adoption of a Meth Project is associated with a 1.53 percentage point decrease in the probability of meth use. The same specification yields a similar estimate using the combined YRBS data.¹² However, when state-specific linear time trends are included, these estimates become much smaller in magnitude and lose statistical significance.¹³

The state-specific linear time trends are included to avoid confounding the treatment effect with pre-treatment trends. However, when there are insufficient observations in the pre-treatment period, empirically disentangling the trends and the treatment effect becomes difficult (Wolfers 2006). To address this issue, we consider a series of sensitivity analyses in Table 4. Here, we restrict focus to treatment states with relatively more pre-treatment years of data. For example, in panel A of Table 4, we drop treated states with only one year of pre-Meth Project data; in panel C, we drop treated states with three or fewer years of pre-Meth Project data. In general, these results support the findings from Table 3.¹⁴

In Table 5, we consider whether the relationship between the Meth Project depends on age, gender, or race.¹⁵ All estimates presented are based on specifications that include state-

¹² We also experimented with using the wild cluster bootstrap method suggested by Cameron et al. (2008) to produce t-statistics. Wild cluster bootstrap critical values provide an asymptotic refinement and may work better than other inference methods for OLS when the number of clusters is small. Both of the statistically significant effects shown in Table 3 became statistically insignificant at conventional levels when using the wild cluster bootstrap procedure.

¹³ For the national YRBS analysis, we considered weighted regressions using the sample weights provided by the CDC. These results were similar to those reported in Table 3. Because the national and state YRBS data were not specifically designed to be pooled, we also experimented with including the interaction term, *Meth Project*National YRBS*, on the right-hand-side of the estimating equation, where *National YRBS* is equal to one if the respondent was part of the national YRBS sample and equal to zero if the respondent was part of the state YRBS sample. This interaction term was never statistically distinguishable from zero, quelling some concerns about the viability of combining the two data sets.

¹⁴ It is also important to note that the national YRBS data set represents a highly unbalanced panel. We experimented with running our national YRBS analyses on a sample where only states with one or fewer missing years of data were included. These results were very similar to those shown in Table 3.

¹⁵ Appendix Table 3 shows mean rates of meth use by age, gender, and race.

specific linear time trends. The results in panel A compare estimates for YRBS respondents who were under the age of 17 at the time of the interview with estimates for respondents who were 17 years of age or older. For both groups, the relationship between the Meth Project and meth use is consistently statistically insignificant.

Panel B of Table 5 provides estimates by gender. The relationship between the Meth Project and meth use among males is negative and statistically significant when based on the national YRBS data. In the state and combined samples, however, this relationship becomes statistically indistinguishable from zero.¹⁶ There is no evidence that the Meth Project had an effect on female meth use.

Finally, the results in panel C of Table 5 provide estimates by race (i.e., white vs. nonwhite). The relationship between the Meth Project and meth use among white high school students is negative and statistically significant in the state YRBS sample.¹⁷ While this relationship becomes statistically insignificant in the combined sample, this may simply be due to the relatively small number of observations contributed by the treated states in the national YRBS data. Consequently, we leave open the possibility that the Meth Project had an effect on white students. There is no evidence that the Meth Project had an effect on meth use among non-white students.¹⁸

¹⁶ The statistically significant effect for males in the national YRBS sample became statistically insignificant when using the wild cluster bootstrap procedure described by Cameron et al. (2008). It is important to note that the coefficient estimates for males across the national and state YRBS samples are statistically indistinguishable from one another.

¹⁷ The statistically significant effect for whites in the state YRBS sample became statistically insignificant when using the wild cluster bootstrap procedure described by Cameron et al. (2008). It is important to note that the coefficient estimates for whites across the national and state YRBS samples are statistically indistinguishable from one another.

¹⁸ To further address issues with combining the national and state YRBS data sets, we collected population data from the National Cancer Institute's Surveillance Epidemiology and End Results Program (<u>http://seer.cancer.gov/popdata/</u>). We used these data to assign population weights to each respondent based on state of residence, age, gender, and race. The idea of weighting using these data is to better ensure representation at the

4. CONCLUSION

The Meth Project, an anti-methamphetamine advertising campaign, is intended to discourage meth use among young people. Since Montana established the first campaign in 2005, seven other states have adopted their own Meth Projects. Using data from the YRBS, Anderson (2010) found no evidence of a relationship between the Montana Meth Project and meth use among high school students.

We build upon the work of Anderson (2010) by using data from the national and state YRBS for the period 1999 through 2011 to examine the relationship between the Meth Project and meth use. During this period, eight states adopted anti-meth campaigns. While our results are typically consistent with those of Anderson (2010), we do find some evidence that the Meth Project may have reduced meth use among white high school students.

REFERENCES

- Anderson, D. Mark. 2010. "Does Information Matter? The Effect of the Meth Project on Meth Use among Youths." *Journal of Health Economics* 29: 732-742.
- Anderson, D. Mark. 2014. "In School and Out of Trouble? The Minimum Dropout Age and Juvenile Crime." *Review of Economics and Statistics* 96.
- Bertrand, Marianne, Esther Duflo, and Sendhil Mullainathan. 2004. "How Much Should We Trust Differences-in-Differences Estimates?" *Quarterly Journal of Economics*119: 249-276.
- Cameron, A. Colin, Jonah B. Gelbach, and Douglas L. Miller. 2008. "Bootstrap-Based Improvements for Inference with Clustered Errors." *Review of Economics and Statistics* 90: 414-427.

national level when estimating regressions based on the pooled national and state YRBS samples. The results based on this exercise support the finding that the Meth Project has not decreased meth use among teens (see Appendix Table 4).

- Carpenter, Christopher and Philip Cook. 2008. "Cigarette Taxes and Youth Smoking: New Evidence from National, State, and Local Youth Risk Behavior Surveys." *Journal of Health Economics* 27: 287-299.
- Carpenter, Christopher and Mark Stehr. 2008. "The Effects of Mandatory Seatbelt Laws on Seatbelt Use, Motor Vehicle Fatalities, and Crash-Related Injuries among Youths." *Journal of Health Economics* 27: 642-662.
- Cawley, John, Chad Meyerhoefer, and David Newhouse. "The Impact of State Physical Education Requirements on Youth Physical Activity and Overweight." *Health Economics* 16: 1287-1301.
- Cunningham, Scott and Keith Finlay. 2013. "Parental Substance Use and Foster Care: Evidence from Two Methamphetamine Supply Shocks." *Economic Inquiry* 51: 764-782.
- Dobkin, Carlos and Nancy Nicosia. 2009. "The War on Drugs: Methamphetamine, Public Health, and Crime." *American Economic Review* 99: 324-349.
- Siebel Scholars. 2010. "Meth Project Named Third Most Effective Philanthropy in the World by *Barron's* Magazine." Available at: <u>http://www.siebelscholars.com/news/meth-project-named-third-most-effective-philanthropy-world-barrons-magazine</u>.
- Siebel, Thomas and Steven Mange. 2009. "The Montana Meth Project: 'Unselling' a Dangerous Drug." *Stanford Law and Policy Review* 20: 405-416.
- Star-Tribune Editorial Board. 2010. "Wyoming Meth Project is Making a Difference." *Star-Tribune*. Available at: http://trib.com/news/opinion/editorial/wyoming-meth-project-is-making-a-difference/article_ce543000-c3fb-5e4b-9934-7a0e69813b8f.html.
- Tremblay, Carol and Davina Ling. 2005. "AIDS Education, Condom Demand, and the Sexual Activity of American Youth." *Health Economics* 14: 851-867.
- Wolfers, Justin. 2006. "Did Unilateral Divorce Raise Divorce Rates? A Reconciliation and New Results." *American Economic Review* 96: 1802-1820.

Figure 1 Fraction Reporting Meth Use

	Effective Date
Arizona	April 2007
Colorado	May 2009
Georgia	March 2010
Hawaii	June 2009
Idaho	January 2008
Illinois	February 2008
Montana	September 2005
Wyoming	June 2008

Table 1. Meth Projects, 1999-2011

	National YRBS		State ?	<u>YRBS</u>	
	Meth Project = 1	Meth Project = 0	Meth Project = 1	Meth Project = 0	Description
Dependent Variable Meth use ^{a, b}	.0430	.0595	.0444	.0572	= 1 if respondent has ever used meth, $= 0$ otherwise
Independent Variable <i>Age under 15^{a, b}</i>	.1030	.0944	.1104	.1328	= 1 if respondent is under $15 = 0$ otherwise
Age 15	.2344	.2245	.2605	.2586	= 1 if respondent is $15, = 0$
Age 16	.2681	.2581	.2664	.2647	= 1 if respondent is $16, = 0$
Age 17 ^{a, b}	.2433	.2620	.2333	.2233	= 1 if respondent is $17, = 0$
Age 18 or older ^b	.1512	.1610	.1294	.1205	= 1 if respondent is 18 or older $= 0$ otherwise
Male ^{a, b}	.5030	.4892	.4927	.4865	= 1 if respondent is male, =
Grade 9	.2483	.2449	.2804	.2819	= 1 if respondent is in $arada \Omega = 0$ otherwise
Grade 10	.2515	.2463	.2674	.2684	= 1 if respondent is in grade $10 = 0$ otherwise
Grade 11 ^b	.2572	.2562	.2472	.2395	= 1 if respondent is in grade $11 = 0$ otherwise
Grade 12 ^b	.2410	.2514	.2023	.1931	= 1 if respondent is in grade 12 = 0 otherwise
Ungraded ^b	.0020	.0011	.0026	.0171	= 1 if grade is "ungraded",
Black ^{a, b}	.1291	.2215	.0732	.1359	= 0 otherwise = 1 if respondent is black, = 0 otherwise
White ^{a, b}	.3594	.4293	.6345	.6273	= 0 otherwise = 1 if respondent is white, = 0 otherwise
<i>Other race</i> ^{<i>a</i>, <i>b</i>}	.5116	.3492	.2923	.2368	= 0 otherwise = 1 if respondent is of another race = 0 otherwise
Unemployment rate ^{a, b}	8.831	6.176	7.120	5.811	State unemployment rate
Ν	5,610	95,136	37,426	497,233	

Table 2. Descriptive Statistics: YRBS 1999-2011

^a Statistically different at 5% level for national YRBS; ^b Statistically different at 5% level for state YRBS.

Notes: Means are based on unweighted data from the national and state YRBS

Table 3. Meth Projects and Youth Meth Use											
	National YRBS		State	<u>YRBS</u>	Combined National and State						
Meth Project	0105 (.0194)	0045 (.0081)	0153** (.0074)	0050 (.0064)	0162* (.0083)	0016 (.0059)					
Ν	100,746	100,746	534,659	534,659	635,405	635,405					
Covariates State FEs	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes	Yes Yes					
Year FEs	Yes	Yes	Yes	Yes	Yes	Yes					
State-specific trends	No	Yes	No	Yes	No	Yes					

* Statistically significant at 10% level; ** at 5% level; *** at 1% level.

Notes: Each cell represents a separate OLS estimate based on data from the YRBS (1999-2011); the covariates are listed in Table 2. The combined national and state YRBS regressions include a dummy variable indicating whether the respondent was sampled in the national YRBS or the state YRBS. Standard errors, corrected for clustering at the state level, are in parentheses.

Panel A: Drop treated states with only one year of pre-	National YRBS		State	State YRBS		tional and State
Meth Project data Meth Project	0123 (.0212)	0086 (.0081)	0192** (.0082)	0072 (.0065)	0161* (.0083)	0016 (.0059)
Ν	98,927	98,927	514,752	514,752	634,863	634,863
Treated states in sample	AZ, GA	A, ID, IL	GA, ID,	MT, WY	AZ, CO, GA, I	D, IL, MT, WY
Panel B: Drop treated states with two or fewer years of pre-Meth Project data						
Meth Project	0112	0066	0192**	0072	0172**	0032
	(.0225)	(.0074)	(.0082)	(.0065)	(.0085)	(.0059)
Ν	98,271	98,271	514,752	514,752	629,457	629,457
Treated states in sample	AZ, C	GA, IL	GA, ID, MT, WY		AZ, GA, ID, IL, MT, WY	
Panel C: Drop treated states with three or fewer years of pre-Meth Project data						
Meth Project	0112	0066	0089	0047	0087	0006
	(.0225)	(.0074)	(.0060)	(.0080)	(.0073)	(.0064)
Ν	98,271	98,271	494,124	494,124	608,645	608,645
Treated states in sample	AZ, GA, IL		GA, I	D, WY	AZ, GA, I	ID, IL, WY
Covariates	Yes	Yes	Yes	Yes	Yes	Yes
State FEs	Yes	Yes	Yes	Yes	Yes	Yes
Year FEs	Yes	Yes	Yes	Yes	Yes	Yes
State-specific trends	No	Yes	No	Yes	No	Yes

Table 4. Sensitivity of Results to Sample Selection

* Statistically significant at 10% level; ** at 5% level; *** at 1% level.

Notes: Each cell represents a separate OLS estimate based on data from the YRBS (1999-2011); the covariates are listed in Table 2. The combined national and state YRBS regressions include a dummy variable indicating whether the respondent was sampled in the national YRBS or the state YRBS. Standard errors, corrected for clustering at the state level, are in parentheses.

	Nation	al YRBS	State	YRBS	Combined Na	tional and State
Panel A: Meth Use by Age						
	Age < 17	Age ≥ 17	Age < 17	Age ≥ 17	Age < 17	Age ≥ 17
Meth Project	0008	0058	0056	0045	0032	0015
	(.0069)	(.0155)	(.0048)	(.0093)	(.0042)	(.0085)
Ν	58,291	42,455	350,122	184,537	408,413	226,992
Panel B: Meth Use by Gender						
·	Male	Female	Male	Female	Male	Female
Meth Project	0129**	.0066	0039	0065	0003	0032
	(.0063)	(.0143)	(.0063)	(.0072)	(.0060)	(.0068)
Ν	49,366	51,380	260,351	274,308	309,717	325,688
Panel C: Meth Use by Race						
-	White	Non-white	White	Non-white	White	Non-white
Meth Project	0023	0012	0089**	.0040	0065	.0071
	(.0122)	(.0145)	(.0041)	(.0099)	(.0047)	(.0078)
Ν	42,855	57,891	335,649	199,010	378,504	256,901
Covariates	Yes	Yes	Yes	Yes	Yes	Yes
State FEs	Yes	Yes	Yes	Yes	Yes	Yes
Year FEs	Yes	Yes	Yes	Yes	Yes	Yes
State-specific trends	Yes	Yes	Yes	Yes	Yes	Yes

Table 5. Meth Projects and Youth Meth Use by Age, Gender, and Race

* Statistically significant at 10% level; ** at 5% level; *** at 1% level.

Notes: Each cell represents a separate OLS estimate based on data from the YRBS (1999-2011); the covariates are listed in Table 2. The combined national and state YRBS regressions include a dummy variable indicating whether the respondent was sampled in the national YRBS or the state YRBS. Standard errors, corrected for clustering at the state level, are in parentheses.

Appendix 12	idle 1. IN	umber (Di Obser	vations	by State	- x ear:	National	IKBS
	1999	2001	2003	2005	2007	2009	2011	Total
Alabama	59	310	647		481	1,055	314	2,866
Arizona*	131	408	344	281	599	358	1,117	3,238
Arkansas			266		416	298		980
California	2,479	2,184	1,723	1,545	2,099	2,789	1,858	14,677
Colorado*		655				193	245	1,093
Connecticut				233				233
Delaware			364				225	589
D.C.							306	306
Florida	860	1,060	1,498	535	740	225	1,145	6,063
Georgia*	810	486	420	1,833	347	1,315	125	5,336
Hawaii*	308					234		542
Idaho*		156		240			260	656
Illinois*	228	438	316	490	585	1,489	990	4,536
Indiana		177	417	170	400		270	1,434
Iowa				238	246			484
Kansas			328	277		199	301	1,105
Kentucky				531	359		214	1,104
Louisiana	621		688	157		427		1,893
Maine	197	203	196					596
Maryland			259					259
Massachusetts		253	212	256	711		289	1,721
Michigan	522	338	398	295	297	320	625	2,795
Minnesota				95		188		283
Mississippi	637	339			359		94	1,429
Missouri	554	463	264	102	345	84	343	2,155
Montana*		184						184
Nevada		236				386	207	829
New Jersey	235	219	305	313	686	479	113	2,350
New Mexico		155	104		220	601		1,080
New York	726	308	910	461	909	1,191	643	5,148
North Carolina	509	666		644	580		1,103	3,502
Ohio	561	224	297	277				1,359
Oklahoma		395		235	280			910
Oregon		184		268		246		698
Pennsylvania	485		316	418	210	1,050	434	2,913
Rhode Island	75							75
South Carolina	798		884	285				1,967
South Dakota			297					297
Tennessee	265	607		394	163		290	1,719
Texas	2,707	2,042	2,617	1,717	1,463	1,321	1,775	13,642
Utah	•	••••	178	273	197	••••	••••	648
Vermont			256					256

. 1: f Al 64 . **X**7 Nati IVDDC ..

11					v			
	1999	2001	2003	2005	2007	2009	2011	Total
Virginia	742		243	348	436	98	202	2,069
Washington		52		101		245	167	565
West Virginia		262		230	244	465	257	1,458
Wisconsin	536	235	178	241	178	682	654	2,704

Appendix Table 1. Number of Observations by State-Year: National YRBS

Notes: States that adopted a Meth Project are denoted with a star superscript and post-adoption observations are italicized.

Appendix Table 2. Number of Observations by State-Year: State YRBS										
	1999	2001	2003	2005	2007	2009	2011	Total		
Alabama	2,038	1,537	1,063	1,075		1,442	1,322	8,477		
Alaska			1,445	•••	1,265	1,213	1,259	5,182		
Arizona*				1,904	1,655	1,483	1,899	6,941		
Arkansas	1,457	1,670		1,505	1,540	1,596	1,310	9,078		
Colorado*				1,464		1,445	1,404	4,313		
Connecticut				2,167	1,980	2,304	1,977	8,428		
Delaware	2,317	2,844	2,950	2,607	2,344	2,220	2,152	17,434		
Florida		4,109	3,952	4,412				12,473		
Georgia*			2,045	1,698	2,371	1,812	1,777	9,703		
Idaho*		1,684	1,698	1,429	1,378	2,094	1,648	9,931		
Illinois*					2,311	2,926	3,416	8,653		
Indiana			1,631	1,508	2,248	1,467	2,726	9,580		
Iowa				1,351	1,418		1,511	4,280		
Kansas				1,636	1,685	1,982	1,811	7,114		
Kentucky			1,574		3,428	1,723	1,650	8,375		
Louisiana						984	1,107	2,091		
Maine		1,308	1,626	1,326	1,259			5,519		
Maryland				1,382	1,479	1,579	2,718	7,158		
Massachusetts			3,528	3,301	3,020	2,608	2,623	15,080		
Michigan	2,602	3,501	3,376	3,195	3,414	3,281	4,083	23,452		
Mississippi	1,594	1,783	1,465		1,553	1,751	1,792	9,938		
Missouri	1,613	1,631	1,530	1,857	1,515	1,592		9,738		
Montana*	2,881	2,582	2,669	2,906	3,831	1,773	3,986	20,628		
Nebraska			2,869	3,681				6,550		
Nevada	1,669	1,428	1,942	1,518	1,714	2,019		10,290		
New Hampshire			1,312	1,249	1,577	1,453	1,358	6,949		
New Jersey		2,028		1,480		1,694	1,617	6,819		
New Mexico					2,523	4,849	5,638	13,010		
New York	3,314		9,004	9,225	12,564	13,625	12,300	60,032		
North Carolina		2,517	2,518	3,804	3,389	5,530	2,205	19,963		
North Dakota	1,790	1,573	1,642	1,711	1,689	1,783		10,188		
Ohio	2,021		1,183	1,372	2,419			6,995		
Oklahoma			1,366	1,686	2,561	1,386	1,133	8,132		
Pennsylvania						2,025		2,025		
Rhode Island		1,361	1,776	2,303				5,440		
South Carolina	4,552			1,265	1,204	1,054	1,404	9,479		
South Dakota	1,645	1,591	1,795	1,557	1,572	2,115	1,499	11,774		
Tennessee			1,919	1,525	2,017	2,166	2,574	10,201		
Texas		6,933		4,088	3,106	3,427	4,009	21,563		
Utah	1,477	1,043	1,418	1,518	1,910	1,541	1,652	10,559		
Vermont		9,012	7,903	9,072	7,309	9,928	8,240	51,464		

Appendix Table 2. Number of Observations by State-Year: State YRBS

				-			
1999	2001	2003	2005	2007	2009	2011	Total
	•••					1,360	1,360
1,467		1,724	1,348	1,351	1,553	2,112	9,555
1,314	2,088		2,345	2,046	2,386	2,949	13,128
1,624	2,712	1,516	2,440	2,142	2,794	2,389	15,617
	1999 1,467 1,314 1,624	1999 2001 1,467 1,314 2,088 1,624 2,712	1999 2001 2003 1,724 1,314 2,088 1,624 2,712 1,516	1999 2001 2003 2005 1,467 1,724 1,348 1,314 2,088 2,345 2,345 1,624 2,712 1,516 2,440	1999 2001 2003 2005 2007 1,467 1,724 1,348 1,351 1,314 2,088 2,345 2,046 1,624 2,712 1,516 2,440 2,142	1999200120032005200720091,4671,7241,3481,3511,5531,3142,0882,3452,0462,3861,6242,7121,5162,4402,1422,794	19992001200320052007200920111,3601,4671,7241,3481,3511,5532,1121,3142,0882,3452,0462,3862,9491,6242,7121,5162,4402,1422,7942,389

Appendix Table 2. Number of Observations by State-Year: State YRBS

Notes: States that adopted a Meth Project are denoted with a star superscript and postadoption observations are italicized.

	<u>Nationa</u>	<u>ll YRBS</u>	State 7	<u>YRBS</u>
Panel A: Meth Use by Age				
	Age < 17	Age ≥ 17	Age < 17	Age ≥ 17
Meth use ^{a, b}	.0536	.0655	.0502	.0679
Panel B: Meth Use by Gender				
	Male	Female	Male	Female
<i>Meth use</i> ^{a, b}	.0658	.0517	.0640	.0490
Panel C: Meth Use by Race				
	White	Non-white	White	Non-white
Meth use ^a	.0687	.0511	.0562	.0565

Appendix Table 3. Descriptive Statistics for *Meth Use* by Age, Gender, and Race

^a Statistically different at 5% level for national YRBS; ^b Statistically different at 5% level for state YRBS.

Notes: Means are based on unweighted data from the national and state YRBS.

Panel A: Full Sample					
	Full Sample				
Meth Project	0030	0007			
	(.0061)	(.0053)			
Ν	635,405	635,405			
State-specific trends	No	Yes			
Panel B: Meth Use by Age					
	Age < 17	$Age \ge 17$			
Meth Project	0066	.0063			
	(.0064)	(.0055)			
Ν	408,413	226,992			
State-specific trends	Yes	Yes			
Panel C: Meth Use by Gender					
_	Male	Female			
Meth Project	0070	.0056			
	(.0103)	(.0061)			
Ν	309,717	325,688			
State-specific trends	Yes	Yes			
Panel D: Meth Use by Race					
	White	Non-white			
Meth Project	0028	.0107***			
	(.0057)	(.0037)			
	378,504	256,901			
State-specific trends	Yes	Yes			

Appendix Table 4. Population Weighted Analysis for the Combined National and State YRBS

* Statistically significant at 10% level; ** at 5% level; *** at 1% level.

Notes: Each cell represents a separate OLS estimate based on data from the YRBS (1999-2011). All models control for the covariates listed in Table 2, a dummy variable indicating whether the respondent was sampled in the national YRBS or the state YRBS, year fixed effects, and state fixed effects. Standard errors, corrected for clustering at the state level, are in parentheses.