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Review of Probability Theory
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A Mega HW #1 (du&eptembel6h) will be
based on our review of probability theory
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A Random variables and their probability distributions

I Ar.v. takes on a numerical value and has an outcome that is determined by an
experiment
I EX. The # of heads appearing in 10 coin flips
A One trial will have a different outcome than another
I We will denoter . withGupper case letters (e.g., X) and outcomes of thewithd s
lower case letters

I Example of a.v. is a Bernoulli (or binaryj).v.
A Only takes on values of 0 or 1

A Discrete random variables

I Take on finite or @ountablyinfinite number of values

\ J
|

An infinite number of values that can be putin a
oneto-one correspondence with positive integers
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A Bernoulli random variable is the simplest example of a discrete
random variable

I Only thing we need to completely describe the behavior of a Bernaulli
IS the probability that it takes on the value of one

I EX. Coin flipping
PX=1)=%

P(X=0)=1%
-remember that the probabilities must sum to 1.

More generally,
P(X=1)=d

PX=0=1i d
wheredis any number b/w 0 and 1
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A Any discreter.v. is completely described by listing its possible
values and the associated probability that it takes on each valu:

A If X takes on the k possible values;{x,, X;, &/}, then the
probabilities p, p,, P, Py Are defined by
p=PX=x), | =1, 2, 3, €,
where eachps between Oand 1 and pp,+ p;+ epc*1

A Back to Bernoulli example
I Determined entirely by value of
I Notation for Bernoullr.v.:

X ~ Bernoullid)
AX has a Bernoul | i di stri buth on
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A Theprobability density function (pdf) of X summarizes the information
concerning the possible outcomes of X and the corresponding probabilities

f(x)=p, J = 1, 2, €, Kk
with f(x) for any x not equal tg; for some |.

In other words, for any real number X, f(x) is the probability that.the
X takes on the particular value Xx.

A Example

Given a pdf of a discretev., it is simple to compute the possibility of any event involving
thatr.v. Suppose X is the number of free throws made by a basketball player out of two
attempts, so X can take on the three values {0, 1, 2}.

Assume pdf of X is given by f(0) = .2, f(1) = .44, and f(2) = .36. We can use the pdf to
calculate the probability the player makes at least one free throw

P(X O 1) = P(X = 1) + P(X = 2) =

Q. What does graph gfdf for thisr.v. look like?
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A Continuous random variables

I While measurements are always discrete in practice, random variables
take on numerous values are best treated as continuous
A Example.

I Most refined measure of price is ceftechnically discrete, but so many possible
values of price that using mechanics of discrete \is.n@t geasible)

I Because it does not make sense to discuss the probability that a contint
r.v. takes on a particular value, we use the pdf of a continuausnly to
compute events involving a range of values

A Example.

- If aandb are constants wheee< b, the probability that X lies betweerandb, P@O X
b), is the area under the pdf between parasdb (i.e., an integral)

f(x)
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A When computing probabilities for continuous random variables, it is
easiest to work with theumulative distribution function ( cdf)

A If X is anyr.v., then itscdf is defined for any real number x by
F(x) = P(X O x)
where F(Xx) 1 s the area under

I Because F(x) is a probability, it is always between 0 and 1.
il f x1 < x2, then P(X O x1) O P( X

A A cdfis an increasing (or at leashandecreasingunction of x

A Two important properties of@f that are useful
i For any number ¢, P(X > c)Ei P( X ¢)@ 1i F(c)
i For any numbers a i@, P(a O X C

A In our studies (for the most part), we will usel ftoocempute
probabilities only for continuous . yso b does not matter whether
Inequalities in probability states dsandingor not.
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That iIs,

P(X O ¢c) = P(X > ¢)
and
P(a < X < b) = P(a O
= P@<X l:()
= P( &b)0O X

M MONTANA

STATE UNIVERSITY Mountains = Minds



Joint Distributions, Conditional Distributions, and Independence

A We are usually interested in the occurrence of events involving r
than one random variable

A ex. 1.

I An airline might be interested in the probability that a person who makes
reservation shows ugndis a business traveler
A This is an example ofjaint probability

A ex. 2.

I Or, an airline might be interested in the following: conditional on the pers
being a business traveler, what is the probability he/she shows up?
A This is an example of @onditional probability
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A Joint distributions

I Let X&Y bediscretee . vThéns(X, Y) have pint distribution , which
Is fully described by the joint probability density function of (X, Y):

fxy (Xy) =P(X=X,Y =y)
I Random variables X and Y are said to be indepentfent

fxv (Xy) =1 (X)fy(y)
where we refer td,(x) andf, (y) as marginal probability density functions

(note: this definition of independence is valid for discrete and continuot
r. y. 0s
i Letos deal with the discrete cas
A If X and Y are discrete then the second formula above is the same as
P(X= X, Y=y) = P(X=xX)P(Y=y)
l.e., the product of two probabilities
A For n cases,
f(Xy, X, X3, B),=PX =X, X=X, X=X3, &EFX)

A Insum, the . WX, B,s é X, are independemt . viff thedr joint pdf is the product of
the individual pdfs for anyx(, x,, X5, %), This definition holds for continuous. v . G
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A Example
I Suppose an airline accepts n reservations for a particular flight

I Foreach= 1, 2, ,cdenotethe Belneulhv. iMdicating whether
customet shows up:

Y= 1 if customer appears, and;¥ O otherwise

I Letting d denote probability of success, eacthas a Bernoulld)
distribution

I As an approximation, we might assume tharé independent of one
another
A Q. Why might this not be true in reality?
A e.g., people travel in groups

I Variable of primary interest is the total number of customers showing up
out of n reservations; call this variable X
A Since each Yis unity when a person shows up, we can write
X=Y,+Y,+ éY,+
I Now, assuming that each Nas probability of succesiand that the Yare
Independent, X can be shown to havareomial distribution
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A The pdf of X is
QW —p — o miphgB R

where A a )Aand for any integer n, nlis defined as n!=4j(n-2 ) € 1 .

A When ar.v. X has the pdf given above, we write
X ~ Binomial(n,d).

A We can use the pdf above to compute P(X = x) for any value of x from O to r

A Back to airline example
i If aflight has 100 available seats, the airline is interested in P(X > 100). Suppose initially t
the airline accepts 120 reservations, n = 120. Also, suppose the probability a person shov
isd=.85.
i Then, P(X > 100) = P(X = 101) + P(X = 10
guv p v 8 guv p v
a .6509
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A Condltlonal Distributions

In econometrics, we are usually interested in howrangcall it Y, is
related to one or more other variables

Suppose we are interested in the effects of X

The most we can know about how X affects Y is contained in the
conditional distribution of Y given X. This info is summarized by the
conditional probability density function
leX (Y1¥) = fy v (XY (X)
for all values of x such th&f(x) > 0

Interpretation is most easily seen when X and Y are discrete. Then,

fyix (YIX) = P(Y=y|X=x)

When Y is continuous,f(y[|X) Is not interpretable directly as a
probability, but conditional probabilities are found by computing areas
under the conditional pdf
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A If X and Y are independent . ythed what do the conditional
pdfslook like?
fyx(YI¥) =1y (y)

and

Fyy (Xly) = fx (%)

A From the first equation on the previous slide, we obtain the
Important result

f(x,y) = f(y|x)fx(x)
= f(x|y)fy(y)
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Features of Probabillity Distributions

A Expected Value
I One of the most important probabilistic concepts in econometrics

I If Xis ar.v., the expected value of X (denoted as E(X) and sometigpes |
or simply ) is a weighted average of all possible values of X

I The weights are determined by the pdf

I Sometimes, the expected value is callgapulation mean especially
when we want to emphasize that X represents some variable in a

population
Case 1: X is a discrete.v.
E(X) = x,f(x)) + %f(x,) + xg(x)r+ Bl w0 Qw
Case 2: X Is a continuous.v.
EX)=, o@WQw
which we assume is well defined.
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A Given ar.v. X and a functi onrvg(XARFor we
example, if X is a.v., then so is Xand log(X) (if X>0). The expected value
of g(X) is, again, simply a weighted average:

E[9X)]=B "d®)Q o
or, in the continuous case
E[g(X)] =, "0 QAwQw

A IfXand Y arer . yg(XoY3is ar.v. for any function g, and so we can
define its expectation

E[g(X.Y)]=B B "doho)0; @ho
wherefy y Is the joint pdf.

In the continuous case,
E[g(X,Y)] = A "X A Q 0 Q 6
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A Properties of Expected Values
I Property E.1: For any constant ¢, E(c) = ¢
I Property E.2: For any constants a and ba(+ b) =aHX] + b

i Property E.3: If {a,, &, & , a,} are constants and {XX,,& , X} are
r . ythed s

E(@X;+aX,+ €a))=aE(X)+aE(X)+ éaHKX)
or

EB wk B O

Example. [fX~Binomial(n,d , then E(X) =

To show this, we write X as X =+ Y, + €& Y jwhere each Y~
Bernoulli(d). It follows,

EX)=B O0& =B  d=nd
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A Measures of Variability: Variance and Standard Deviation

I Centraltendencyafv. 1 s useful , but 1t does
know about its distribution

I Consider the two pdfs

pdf

o Xy
I Theser . ‘havé the same means, but distribution of X is more tightly
centered around that mean
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A Various ways to measure how far X is from its expected value
E(X), but the simplest one to work with algebraically is the
sqguared difference

(X - W)?
Q. What does squaring do for us?

-squaring eliminates the sign from the
distance measure

-values above and below [ are treate
symmetrically

A Variance tells us how far X is from p, on average

Val X] [-pgE[ ( X
often denoted a$?
Var[X] = E[X?T 2Xu + Y] = E[X?] - 2p2 + p?

= E[X?] - p2(commonly written a&[X?] i E[X]?)
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A Example.
If X~Bernoulli(d), then E[X] =d.

Solve forVar[X]
Var[X] = E[X?] T E[X]?= E[X] T E[X]? (because X =}
=d-d?
=d@7i d) (commonly written this way)

A Property Var. 1. Var[X] = 0 iff there is a constant ¢ such that P(X=c) = 1, in
which case E[X] =cC

(i.e., the variance of any constant is zero and.N.ehas zero
variance, then it is essentially constant)

A Property Var. 2. For any constants and b,
Var[aX + b] = &Var[X]
(i.e., adding a constant ta.@. does not change variance, but

multiplying ar.v. by a constant increases variance by a factor
equal to the square of that constant)
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A Standard Deviation
This Is the positive square root of the variance

sd X) \/cb O
often denoted as

Property sd. 1.For any constant sdc) =0
Property sd. 2.For any constants a and b,
sdaX + b) = a|sdX)
-this property makesdmore natural to work with
than the variance
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A Standardizing ar.v.
I Suppose given av. X, we define a new.v. by subtracting off its mean
and dividing by itssdu:
Z [ -/
which we can write as
Z=aX+ b, wheand all 1/

I Then, fromproperty E.2,
E[Z]=aHX] +b=(Q/A0)p-wi=0

and fromproperty Var.2,
Var[Z] = a?Var[X] = a20?= 1

=> r.v. Z has a mean zero and variance equal to one. Later we will see tt
standardizing a.v. is often used in statistical inference.
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Features of Joint and Conditional Distributions

A Measures of Association: Covariance and Correlation

I Itis useful to have summary measures of how, on average, twavaryo s
with one another.

A Covariance

I Letp, = E[X]and W, = E[Y] and consider thev.
(X - (Y - Hy)

T If XandY are both above their means, or both below their means, then
(X - (Y - py) >0

I IfX>pand Y <l or X<p,and Y>>y, then
(X - (Y - 1y) <0

I Covarianceis defined as

Cou( X, Y(X-H)(Y EHy)]

also denoted a$,
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i If Oy, > 0, then, on average, when X is above its mean, Y is also above its

i If Oyy <0, then, on average, when X is above its mean, Y is below its mea
I Several expressions useful for comput@om(X,Y) are:

Coum(X,Y) = E[(X - 1) (Y - k)]

= E[XY - 1Y - iy X+ oy ]
= E[XY] - Bghly - Bghly + by
= EIXY] -,y

It follows, that if E[X] = 0 or E[Y] = 0, then
CovX,Y) = E[XY]
I Covariance measures amount of linear dependence between.two .
A CouX,Y) > 0 implies twor . vnov@ & same direction
A CovX,Y) < 0 implies twor . vmov@ 81 opposite direction

A Interpreting magnitude can be tricky, which will we show

(@)
(0)]
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A Property Cov.1.If X and Y are independent, th€ouX,Y) =0

I This follows from the fact that
E(XY) = E(X)E(Y) when X and Y are independent

Note: the converse @roperty Cov.1is not true.

A Property Cov. 2.For any constants, b, &, and b

Cova X + by, &Y + b))
= a,aCov(X, Y)

A Property Cov. 3. ICoM X, YsdX)sd®)

I Absolute value of covariance b/w any twa vs.bd@usded by the product of their standard
deviations; known as the CaueBghwartz inequality
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A Correlation Coefficient

I Suppose we want to know relationship b/w amount of education and
annual earnings in the working population

I Let X denote education and Y denote earnings

I Their covariance depends on how we choose to measure both

A Property Cov. 2implies the covariance b/w education and earnings depends on whet
earnings are measured in dollars or thousands of dollars, or whether education is
measured in months or years

I This is a major drawback of using covariance

I Correlation coefficient between X and Y
A Corr( X, YOPVXEY){ sAX)SAY)} = Ciyy /1y Oy
sometimes denoted ag,
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A If X and Y are independent, th€orri(X, Y) = 0.

A Magnitude of correlation coefficient is easier to interpret than t
size of the covarianceée

A Property Corr.1.-1 Gor X, Y) O 1

I If Corn(X,Y) =0, there is no linear relationship b/w X and Y, and X and Y
are said to be uncorrelated. yothérwise, X and Y are correlated

I Corr(X, Y) = 1 implies a perfect positive linear relationship, which means
we can write Y =a + bX for some constaret and some constabt> 0
I Corn(X, Y) =-1 implies a perfect negative linear relationship, so that

Y =a+ bX for someb <0
I Extreme cases of positive or negative 1 rarely occur
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A Correlation b/w X and Y is invariant to the units of measurement of
either X or Yéstated more gener a

A Property Corr. 2. For constants,ab;, &, and b, with aa, > 0
Corr(aX + by, &Y + b,) = Corr(X, Y)

If a,a, <0, then
Corr(aX + by, &Y + b,) =-Corr(X, Y)

M MONTANA

STATE UNIVERSITY Mountains = Minds



(@)
n

Vari ance of Sums of R. V.
A Property Var. 3

T For constanta andb

Var(aX + bY) = a?Var(X) + b2var(Y) + 2abCov(X,Y)
it follows that, if X and Y are uncorrelated, that
Var(X +Y) = Var(X) + Var(Y)
and
Var(X 1 Y) = Var(X) + Var(Y)
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A Property Var. 4

i If{X,, &} arepairwiseuncorrelated random variables aral { =
1,é,n} are constants, then

Var(a X, + éaX,)=a*Var(X,) + ¢&VaKX)a
I If the X are notpairwiseuncorrelated, then the expression for
IS much more complicated; we must add to the RHS of the first equatior
above the terms ZCov(X;, X)) for alli > |

I For pairwiseuncorrelated random variables wheye 1 for alli, then the
variance of the sum is the sum of the variances



