
ECNS 561

Review of Probability Theory



ÅMega HW #1 (due September 26th) will be 

based on our review of probability theory



Å Random variables and their probability distributions
ï A r.v. takes on a numerical value and has an outcome that is determined by an 

experiment

ï Ex. The # of heads appearing in 10 coin flips
Å One trial will have a different outcome than another

ïWe will denote r.v.ôswith upper case letters (e.g., X) and outcomes of the r.v.ôswith 

lower case letters

ï Example of a r.v. is a Bernoulli (or binary) r.v.
Å Only takes on values of 0 or 1

Å Discrete random variables
ï Take on finite or a countablyinfinite number of values

An infinite number of values that can be put in a 

one-to-one correspondence with positive integers



ÅBernoulli random variable is the simplest example of a discrete 

random variable

ïOnly thing we need to completely describe the behavior of a Bernoulli r.v. 

is the probability that it takes on the value of one

ïEx. Coin flipping

P(X = 1) = ½

P(X = 0) = ½ 

-remember that the probabilities must sum to 1.

More generally,

P(X = 1) = ɗ

P(X = 0) = 1 ïɗ

where ɗis any number b/w 0 and 1



ÅAny discrete r.v. is completely described by listing its possible 

values and the associated probability that it takes on each value

ÅIf X takes on the k possible values {x1, x2, x3, é, xk}, then the 

probabilities p1, p2, p3, é, pk are defined by

pj = P(X = xj), j = 1, 2, 3, é, k

where each pj is between 0 and 1 and p1 + p2 + p3+ é + pk = 1

ÅBack to Bernoulli example

ïDetermined entirely by value of ɗ

ïNotation for Bernoulli r.v.:

X ~ Bernoulli(ɗ)

ñX has a Bernoulli distribution with probability of success equal to ɗò



Å The probability density function (pdf) of X summarizes the information 

concerning the possible outcomes of X and the corresponding probabilities

f(xj) = pj, j = 1, 2, é, k

with f(x) for any x not equal to xj for some j.

In other words, for any real number x, f(x) is the probability that the r.v. 

X takes on the particular value x.

Å Example

Given a pdf of a discrete r.v., it is simple to compute the possibility of any event involving 

that r.v. Suppose X is the number of free throws made by a basketball player out of two 

attempts, so X can take on the three values {0, 1, 2}.

Assume pdf of X is given by f(0) = .2, f(1) = .44, and f(2) = .36. We can use the pdf to 

calculate the probability the player makes at least one free throw

P(X Ó 1) = P(X = 1) + P(X = 2) = .44 + .36 = .8

Q. What does graph of pdf for this r.v. look like?



ÅContinuous random variables

ïWhile measurements are always discrete in practice, random variables that 

take on numerous values are best treated as continuous

ÅExample.

ïMost refined measure of price is cents(technically discrete, but so many possible 

values of price that using mechanics of discrete r.v.ôsis not feasible)

ïBecause it does not make sense to discuss the probability that a continuous 

r.v. takes on a particular value, we use the pdf of a continuous r.v. only to 

compute events involving a range of values

ÅExample.

- If a and b are constants where a < b, the probability that X lies between a and b, P(aÒ X Ò 

b), is the area under the pdf between points a and b (i.e., an integral) 



ÅWhen computing probabilities for continuous random variables, it is 

easiest to work with the cumulative distribution function ( cdf)

Å If X is any r.v., then its cdf is defined for any real number x by 

F(x) = P(X Ò x)

where F(x) is the area under the pdf, f(Ā), to the left of point x.

ïBecause F(x) is a probability, it is always between 0 and 1.

ïIf x1 < x2, then P(X Ò x1) Ò P(X Ò x2), i.e., F(x1) Ò F(x2).

ÅA cdf is an increasing (or at least a nondecreasing) function of x

ÅTwo important properties of a cdf that are useful

ïFor any number c, P(X > c) = 1 ïP(X Ò c) = 1 ïF(c)

ïFor any numbers a < b, P(a Ò X Ò b) = F(b) ïF(a)

Å In our studies (for the most part), we will use cdfôsto compute 

probabilities only for continuous r.v.ôs, so it does not matter whether 

inequalities in probability states are binding or not.



That is,

P(X Ó c) = P(X > c)

and 

P(a < X < b) = P(a Ò X Ò b) 

= P(a < X Ò b)

= P(a Ò X < b) 



Joint Distributions, Conditional Distributions, and Independence

ÅWe are usually interested in the occurrence of events involving more 

than one random variable

Åex. 1.

ïAn airline might be interested in the probability that a person who makes a 

reservation shows up and is a business traveler 

ÅThis is an example of a joint probability

Åex. 2. 

ïOr, an airline might be interested in the following:  conditional on the person 

being a business traveler, what is the probability he/she shows up?

ÅThis is an example of a conditional probability



ÅJoint distributions

ïLet X & Y be discrete r.v.ôs. Then, (X, Y) have a joint distribution , which 

is fully described by the joint probability density function of (X, Y):

fX,Y (x,y) = P(X = x, Y = y)

ïRandom variables X and Y are said to be independent iff

fX,Y (x,y) = fX(x)fY(y)

where we refer to fX(x) and fY(y) as marginal probability density functions

(note: this definition of independence is valid for discrete and continuous 

r.v.ôs)

ïLetôs deal with the discrete case

ÅIf X and Y are discrete then the second formula above is the same as

P(X= x, Y=y) = P(X=x)P(Y=y)

i.e., the product of two probabilities

ÅFor n cases, 

f(x1, x2, x3, é, xn) = P(X = x1, X = x2, X = x3, é, X = xn) 

ÅIn sum, the r.v.ôsX1, X2,é, Xn are independent r.v.ôs, iff their joint pdf is the product of 

the individual pdfs for any (x1, x2, x3, é, xn).  This definition holds for continuous r.v.ôs.



ÅExample

ïSuppose an airline accepts n reservations for a particular flight

ïFor each i = 1, 2, é, n, let Yi denote the Bernoulli r.v. indicating whether 

customer i shows up:

Y i = 1 if customer i appears, and Yi = 0 otherwise

ïLetting ɗdenote probability of success, each Yi has a Bernoulli(ɗ) 

distribution

ïAs an approximation, we might assume the Yi are independent of one 

another

ÅQ. Why might this not be true in reality?

Å e.g., people travel in groups

ïVariable of primary interest is the total number of customers showing up 

out of n reservations; call this variable X

ÅSince each Yi is unity when a person shows up, we can write

X = Y1 + Y2+ é + Yn

ïNow, assuming that each Yi has probability of success ɗand that the Yi are 

independent, X can be shown to have a binomial distribution



Å The pdf of X is

Ὢὼ — ρ — ȟὼ πȟρȟςȟȣȟὲ

where
Ȧ

Ȧ Ȧ
and for any integer n, n! is defined as n!=n(n-1)(n-2)é1.  

Å When a r.v. X has the pdf given above, we write

X ~ Binomial(n, ɗ).

Å We can use the pdf above to compute P(X = x) for any value of x from 0 to n.

Å Back to airline example

ï If a flight has 100 available seats, the airline is interested in P(X > 100). Suppose initially that 

the airline accepts 120 reservations, n = 120.  Also, suppose the probability a person shows up 

is ɗ= .85.

ï Then, P(X > 100) = P(X = 101) + P(X = 102) + é+ P(X = 120)

Ȣψυ ρ Ȣψυ ȣ Ȣψυ ρ Ȣψυ

å .659



ÅConditional Distributions
ïIn econometrics, we are usually interested in how one r.v., call it Y, is 

related to one or more other variables

ïSuppose we are interested in the effects of X

ïThe most we can know about how X affects Y is contained in the 

conditional distribution of Y given X.  This info is summarized by the 

conditional probability density function

fY|X (y|x) = fX,Y(x,y)/fx(x)

for all values of x such that fx(x) > 0

ïInterpretation is most easily seen when X and Y are discrete.  Then,

fY|X (y|x) = P(Y=y|X=x)

ïWhen Y is continuous, fY|X(y|x) is not interpretable directly as a 

probability, but conditional probabilities are found by computing areas 

under the conditional pdf



ÅIf X and Y are independent r.v.ôs, then what do the conditional 

pdfslook like?

fY|X(y|x) = fY(y)

and 

fX|Y(x|y) = fX(x)

ÅFrom the first equation on the previous slide, we obtain the 

important result

f(x,y) = f(y|x)fX(x)

= f(x|y)fY(y)



Features of Probability Distributions

ÅExpected Value

ïOne of the most important probabilistic concepts in econometrics

ïIf X is a r.v., the expected value of X (denoted as E(X) and sometimes µX

or simply µ) is a weighted average of all possible values of X

ïThe weights are determined by the pdf

ïSometimes, the expected value is called a population mean, especially 

when we want to emphasize that X represents some variable in a 

population

Case 1: X is a discrete r.v.

E(X) = x1f(x1) + x2f(x2) + é + xkf(xk) ſ В ὼὪὼ

Case 2: X is a continuous r.v.

E(X) = ᷿ ὼὪὼὨὼ

which we assume is well defined.



Å Given a r.v. X and a function g(Ā), we can create a new r.v. g(X). For 

example, if X is a r.v., then so is X2 and log(X) (if X>0).  The expected value 

of g(X) is, again, simply a weighted average:

E[g(X)] = В Ὣὼ Ὢ ὼ

or, in the continuous case

E[g(X)] = ᷿ ὫὼὪ ὼὨὼ

Å If X and Y are r.v.ôs, g(X,Y) is a r.v. for any function g, and so we can 

define its expectation

E[g(X,Y)] = В В Ὣὼȟώ Ὢȟ ὼȟώ

where fX,Y is the joint pdf.

In the continuous case,

E[g(X,Y)] = ḀὫὼȟώὪὼȟώὨώὨὼ



ÅProperties of Expected Values

ïProperty E.1: For any constant c, E(c) = c

ïProperty E.2: For any constants a and b, E(aX + b) = aE[X] + b

ïProperty E.3: If {a1, a2, é, an} are constants and {X1, X2,é, Xn} are 

r.v.ôs, then

E(a1X1 + a2X2+ é + anXn) = a1E(X1) + a2E(X2) + é + anE(Xn) 

or

E(В ὥὢ В ὥὉὢ

Example.  If X~Binomial(n,ɗ, then E(X) = nɗ

To show this, we write X as X = Y1 + Y2+ é + Yn, where each Yi ~ 

Bernoulli(ɗ).  It follows,

E(X) = В Ὁὣ = В ɗ= nɗ



ÅMeasures of Variability: Variance and Standard Deviation

ïCentral tendency of r.v. is useful, but it doesnôt tell us everything we want to 

know about its distribution

ïConsider the two pdfs

ïThese r.v.ôshave the same means, but distribution of X is more tightly 

centered around that mean



ÅVarious ways to measure how far X is from its expected value, 

E(X), but the simplest one to work with algebraically is the 

squared difference

(X - µ)2

Q. What does squaring do for us?

-squaring eliminates the sign from the 

distance measure

-values above and below µ are treated 

symmetrically

ÅVariance tells us how far X is from µ, on average

Var[X] ſ E[(X - µ)2]

often denoted as ů2 

Var[X] = E[X 2ï2Xµ + µ2] = E[X2] - 2µ2 + µ2 

= E[X2] - µ2 (commonly written as E[X2] ïE[X] 2)



ÅExample.

If X~Bernoulli(ɗ), then E[X] = ɗ. 

Solve for Var[X]

Var[X] = E[X 2] ïE[X] 2 = E[X] ïE[X] 2  (because X = X2)

= ɗ- ɗ2 

= ɗ(1 ïɗ) (commonly written this way)

Å Property Var. 1. Var[X] = 0 iff there is a constant c such that P(X=c) = 1, in 

which case E[X] = c

(i.e., the variance of any constant is zero and if a r.v. has zero 

variance, then it is essentially constant)

Å Property Var. 2. For any constants and b,

Var[aX + b] = a2Var[X]

(i.e., adding a constant to a r.v. does not change variance, but 

multiplying a r.v. by a constant increases variance by a factor 

equal to the square of that constant)



ÅStandard Deviation

This is the positive square root of the variance

sd(X) ſ +ὠὥὶὢ

often denoted as ů

Property sd. 1. For any constant c, sd(c) = 0

Property sd. 2. For any constants a and b, 

sd(aX + b) = |a|sd(X)

-this property makes sdmore natural to work with 

than the variance



ÅStandardizing a r.v.

ïSuppose given a r.v. X, we define a new r.v. by subtracting off its mean 

and dividing by its sdů:

Z ſ (X - µ)/ů

which we can write as

Z = aX+ b, where a ſ 1/ůand b ſ -µ/ů

ïThen, from property E.2,

E[Z] = aE[X] + b = (1/ů)µ - µ/ů= 0

and from property Var.2 ,

Var[Z] = a2Var[X] = a2ů2 = 1

=> r.v. Z has a mean zero and variance equal to one.  Later we will see that 

standardizing a r.v. is often used in statistical inference.



Features of Joint and Conditional Distributions

ÅMeasures of Association: Covariance and Correlation

ïIt is useful to have summary measures of how, on average, two r.v.ôsvary 

with one another.

ÅCovariance

ïLet µx = E[X] and µY = E[Y] and consider the r.v. 

(X - µx)(Y - µY)

ïIf X and Y are both above their means, or both below their means, then

(X - µx)(Y - µY) > 0

ïIf X > µx and Y < µY or X < µx and Y > µY , then

(X - µx)(Y - µY) < 0

ïCovariance is defined as

Cov(X, Y) ſ E[(X - µx)(Y - µY)]

also denoted as ůXY



ïIf ůXY > 0, then, on average, when X is above its mean, Y is also above its mean

ïIf ůXY < 0, then, on average, when X is above its mean, Y is below its mean

ïSeveral expressions useful for computing Cov(X,Y) are:

Cov(X,Y) = E[(X - µx)(Y - µY)] 

= E[XY - µxY - µYX + µxµY]

= E[XY] - µxµY - µxµY + µxµY

= E[XY] - µxµY

It follows, that if E[X] = 0 or E[Y] = 0, then 

Cov(X,Y) = E[XY]

ïCovariance measures amount of linear dependence between two r.v.ôs

ÅCov(X,Y) > 0 implies two r.v.ôsmove in same direction

ÅCov(X,Y) < 0 implies two r.v.ôsmove in opposite direction

ÅInterpreting magnitude can be tricky, which will we show



Å Property Cov.1. If X and Y are independent, then Cov(X,Y) = 0

ïThis follows from the fact that 

E(XY) = E(X)E(Y) when X and Y are independent

Note: the converse of property Cov.1 is not true.

Å Property Cov. 2. For any constants a1, b1, a2, and b2

Cov(a1X + b1, a2Y + b2)

= a1a2Cov(X, Y)

Å Property Cov. 3. |Cov(X,Y)| Ò sd(X)sd(Y)

ï Absolute value of covariance b/w any two r.v.ôsis bounded by the product of their standard 

deviations; known as the Cauchy-Schwartz inequality



ÅCorrelation Coefficient

ïSuppose we want to know relationship b/w amount of education and 

annual earnings in the working population

ïLet X denote education and Y denote earnings

ïTheir covariance depends on how we choose to measure both

ÅProperty Cov. 2 implies the covariance b/w education and earnings depends on whether 

earnings are measured in dollars or thousands of dollars, or whether education is 

measured in months or years

ïThis is a major drawback of using covariance

ïCorrelation coefficient between X and Y

ÅCorr(X,Y) ſ Cov(X,Y)/{ sd(X)sd(Y)} = ůXY/ůXůY

sometimes denoted as ɟXY



ÅIf X and Y are independent, then Corr(X, Y) = 0.

ÅMagnitude of correlation coefficient is easier to interpret than the 

size of the covarianceé

ÅProperty Corr.1 . -1 Ò Corr(X,Y) Ò 1

ïIf Corr(X,Y) = 0, there is no linear relationship b/w X and Y, and X and Y 

are said to be uncorrelated r.v.ôs; otherwise, X and Y are correlated

ïCorr(X, Y) = 1 implies a perfect positive linear relationship, which means 

we can write Y = a + bX for some constant a and some constant b > 0

ïCorr(X, Y) = -1 implies a perfect negative linear relationship, so that 

Y = a + bX for some b < 0

ïExtreme cases of positive or negative 1 rarely occur



Å Correlation b/w X and Y is invariant to the units of measurement of 

either X or Yéstated more generally as follows:

Å Property Corr. 2 . For constants a1, b1, a2, and b2, with a1a2 > 0

Corr(a1X + b1, a2Y + b2) = Corr(X, Y)

If a1a2 < 0, then 

Corr(a1X + b1, a2Y + b2) = -Corr(X, Y)



Variance of Sums of R.V.ôs

ÅProperty Var. 3
ïFor constants a and b

Var(aX + bY) = a2Var(X) + b2Var(Y) + 2abCov(X,Y)

it follows that, if X and Y are uncorrelated, that

Var(X + Y) = Var(X) + Var(Y)

and

Var(X ïY) = Var(X) + Var(Y)



ÅProperty Var. 4

ïIf {X 1, é, Xn} are pairwiseuncorrelated random variables and {ai, i = 

1,é,n} are constants, then

Var(a1X1+ é+ anXn) = a1
2 Var(X1) + é + an

2 Var(Xn) 

ïIf the Xi are not pairwiseuncorrelated, then the expression for 

is much more complicated; we must add to the RHS of the first equation 

above the terms 2aiajCov(X i,Xj) for all i > j

ïFor pairwiseuncorrelated random variables where ai = 1 for all i, then the 

variance of the sum is the sum of the variances


