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ÅSampling

ïLet Y be a r.v. representing a population with a pdf f(y; ɗ), which 

depends on the single parameter ɗ.

ï If Y 1, Y2, é, Yn are independent r.v.swith a common pdf f(y; ɗ), 

then {Y1, Y2, é, Yn} is said to be a random sample from f(y; ɗ)

-We also say that the Yi are independent, identically 

distributed (iid) r.v.ôsfrom f(y; ɗ).

ÅFinite Sample Properties of Estimators

ïAn estimator of ɗis a rule that assigns each possible outcome of 

the sample a value of ɗ.

ÅThis rule is specified before any sampling is carried out (i.e., the rule is the 

same regardless of the data actually obtained)

ïAs an example of an estimator, let {Y 1, Y2, é, Yn} be a random 

sample from a population with mean µ. 

ïQ. What is a natural estimator of µ?

ïAns. The sample average 

ὣ В ὣ



ÅMore generally, an estimator W of a parameter ɗcan be 

expressed as 

W = h(Y1, Y2, é, Yn)

for some known function of the r.v.ôs, Y1, Y2, é, Yn

ÅWhen a particular set of numbers, say {y1, y2, é, yn}, is plugged 

into h(Ā), we obtain an estimate of ɗ, denoted w = h(y1, y2, é, yn)

ïSometimes W is called a point estimator and w a point estimate

ÅDistribution of an estimator is called the sampling distribution

ïThis describes the likelihood of various outcomes of W across different 

random samples



ÅUnbiasedness

ï In principle, the entire sampling distribution of W can be obtained given 

the probability distribution of Yi and the function h.

ÅUsually easier to focus on a few features of the distribution W in evaluating it as an 

estimator of ɗ

ÅUnbiased Estimator

ïAn estimator, W of ɗ, is an unbiased estimator if

E[W] = ɗ

for all possible values of ɗ

ï If an estimator is unbiased, then its probability distribution has an 

expected value equal to the parameter it is supposed to be estimating



Å Q. Does unbiasedness mean that the estimate we get with any 

particular sample is equal to ɗ?

Å Ans. No!

It means that if we could indefinitely draw random samples on Y 

from the population, compute an estimate each time, and then 

average these estimates over all random samples, we would 

obtain ɗ

Å If W is biased, its bias is defined as

Bias(W) ſ E[W] ïɗ

Å Pdf of W1 unbiasedépdf of W2 is 

biased



ÅSample average ὣis an unbiased estimator of the population 

mean

[insert proof]

ÅFor hypothesis testing, we will also need to estimate the variance 

ů2 from a population with mean µ.

ïLetting {Y 1, Y2, é, Yn} denote the random sample from the population 

with E[Y] = µ and Var[Y] = ů2, define the estimator as

S2 = В ὣ ὣ2, 

which is called the sample variance.

[insert proof that sample variance estimator is unbiased]



ÅWhile unbiasedness has appeal as a property of an estimatoréit 

has some weaknesses

ïSome very good estimators are biased (will see examples soon)

ïUnbiased estimators exist that are actually quite poor estimators

ÅSampling Variance of Estimators

ïUnbiasedness only ensures the sampling distribution of an estimator has a 

mean value equal to the parameter it is supposed to be estimating

ÅWe also, however, want to know how spread out the distribution of the estimator is

ÅAn estimator can be equal to ɗ, on average, but it can also be very far away with large 

probability

ÅUsing W1 as our estimator implies that

it is less likely we will obtain a random

sample that yields an estimate very far

from ɗ.

ÅTo summarize situation in figure, we rely

on the variance of an estimator



ÅVariance of an estimator is called the sampling variance because 

it is the variance associated with a sampling distribution

ïRecall, the sampling variance is not a r.v.; it is a constant, but could be 

unknown

ÅThe variance of the sample average for estimating the mean µ 

from a population is

ὠὥὶὣ ὠὥὶ В ὣ ὠὥὶВ ὣ) = 

(В ὠὥὶὣ (В „ = (n„ ) 

= „ /n



Å In sum,

If {Y i : i = 1, 2, é, n} is a random sample from a population 

with mean µ and variance ů2, then ὣhas the same mean as the 

population, but its sampling variance equals the population 

variance, ů2, divided by its sample size

ÅAn important implication of Var(ὣ) = „ /n is that it approaches 

zero as n gets large

ïThis is a key feature of a good estimator

ÅAs evidenced by the figure above, we prefer estimators with the 

smallest variance



ÅThis allows us to eliminate certain estimators from consideration

ÅFor a random sample from a population with mean µ and variance 

ů2 , we know that ὣis unbiased and Var(ὣ) = „ /n 

ÅQ. What about the estimator Y1, which is just the first observation 

drawn?

ïBecause Y1 is a random draw from the population, Var(Y1) = „

ïThus, the difference between Var(Y1) and Var(ὣ) can be large even for 

small samples

ï If n = 10, then Var(Y1) is 10 times as large as Var(ὣ) = „ /10

ïThis gives us a formal way of excluding Y1 as an estimator of µ

ïLetôs look into this more closely with a STATA example



ÅEfficiency

ï If W1 and W2 are two unbiased estimators of ɗ, W1 is said to be efficient

relative to W2 when Var(W1) Ò Var(W2) for all ɗ, with strict inequality for 

at least one value of ɗ.

ï In our STATA example, Var(ὢ < Var(X1) implies that ὢis efficient 

relative to X1 for estimating µ

ï If we restrict our attention to a certain class of estimators, we can show that 

the sample average has the smallest variance (éyou will be asked to do 

this for Mega HW #2)

ï If we do not restrict focus to unbiased estimators, then comparing variances 

is meaningless

ÅE.g., when estimating population mean µ we can use a trivial estimator that is equal to 

zero, regardless of the sample we draw

ÅNaturally, variance of this estimator is zero (b/c it is the same value for every sample)

ÅBut, the bias of the estimator is -Õéso it is a very poor estimator when |Õ| is large



ÅOne way to compare estimators that are not necessarily unbiased 

is to compute the mean squared error (MSE)of the estimators

ï If W is an estimator of ɗ, then the MSE of W is defined as

MSE(W) = E[(W ïɗ)2].

ïThis measures how far, on average, the estimator is away from ɗ

ï It can be shown that 

MSE(W) = Var(W) + [Bias(W)]2

so that MSE(W) depends on the variance and bias (if any is present)

ïThis allows us to compare two estimators when one or both are biased

[Work problems #3 and #4 from Appendix C]



ÅAsymptotic or Large Sample Properties

ïReasonable to demand that an estimator improves as n gets large

ÅE.g, ὣimproves in that its variance decreases as n increases

ïWe can rule out certain estimators by studying asymptotic or large sample 

properties of estimators

ïAsymptotic analysis involves approximating the features of the sampling 

distribution of an estimator

ÅConsistency

ïConcerns how far estimator is likely to be from the parameter of interest as 

n approaches Ð

ïLet Wn be an estimator of ɗbased on a sample Y1, Y2, é, Yn of size n.  

Then Wn is a consistent estimator of ɗif for every Ů> 0,

P(|Wnïɗ|) > ŮŸ 0 as n Ÿ Ð

ïOtherwise, we say that Wn is inconsistent



ÅUnlike unbiasedness (which is a feature conditional on a certain 

sample size), consistency concerns the behavior of the sampling 

distribution of the estimator as n gets large

ÅThe equation on the previous slide means that the distribution of 

Wn becomes more concentrated around ɗas n gets larger



Å Consistency is a minimal requirement  of an estimator for econometric 

purposes

Å Unbiased estimators are not necessarily consistentébut those whose 

variances shrink to zero as n Ÿ Ð are consistent

Å Formally,

If Wn is an unbiased estimator of ɗand Var(Wn) Ÿ 0 as n Ÿ Ð, then

plim(Wn) = ɗ

Å Example

Consider the average of a random sample drawn from a 

population with mean µ and variance ů2

ïWe already know that this is unbiased

ïAnd, we showed that Var(ὣn) = ů2 /n

ïSo, we clearly see that 

Var(ὣn) Ÿ 0 as n Ÿ Ð 

Hence, ὣis an unbiased and consistent estimator of µ



Å This brings us to the Law of Large Numbers (LLN)

Let Y1, é, Yn be iid r.v.ôswith mean µ.  Then,

plim(ὣn) = µ

The LLN means that, if we are interested in estimating the population 

average µ, we can get arbitrarily close to µ by choosing a sufficiently 

large sample.

Å It can also be shown that the sample variance, Sn
2 = В ὣ ὣ)2, is 

consistent for ů2

ÅProperty Plim.1

Let ɗbe a parameter and define a new parameter, ɔ= g(ɗ), for some 

continuous fnc. g(Ā). Suppose that plim(Wn) = ɗ. Define an estimator ɔby 

Gn = g(Wn).  Then

plim(Gn) = ɔ

often stated as

plim g(Wn) = g(plim Wn) (SlutskyTheorem)

for a continuous function



ÅExample.

SlutskyTheorem directly generalizes to a function of several 

r.v.ôsas illustrated in the following example:

In random sampling from a population with mean µ and 

variance ů2, the exact expected value of would be 

difficult, if not impossible to derive.  But, by the Slutsky

Theorem,

plim( ) = µ2/ů2



Å Property Plim.2

If plim(Tn) = Ŭand plim(Un) = ɓ, then

(i) plim(Tn + Un) = Ŭ+ ɓ

(ii) plim(TnUn) = Ŭɓ

(iii) plim(Tn/Un) = Ŭ/ɓ, provided ɓ> 0

Example.

Let {Y 1, Y2, é, Yn} be a random sample of size n on annual earnings from the population of 

workers with a high school education and denote the population mean as µY. Let {Z 1, Z2, é, 

Zn} be a random sample of size n on annual earnings from the population of workers with a 

college education and denote the population mean as µZ. 

-Suppose we want to estimate the percentage difference in annual earnings b/w the 

two groups, ɔ= 100Ā(ÕZ - µY)/µY

-Because ὣand ὤare consistent for µZ and µY, respectively, it follows from the 

SlutzkyThm. and (iii) from plim.2 that 

Gn = 100Ā(ὤ -ὣ)/ὣ

is a consistent estimator of ɔ



Asymptotic Normality

Å Consistency is a property of point estimators

ï Tells us that the distribution of an estimator is collapsing around the parameter as n gets large

ï But, it tells us little about the shape of the distribution of the estimator for a given sample size

Å For constructing interval estimators and testing hypotheses, we need a way to 

approximate estimator distributions

ï Most econometric estimators have distributions that are closely approximated by a normal 

distribution for large n

Å Asymptotic Normality.  Let {Z1, é, Zn} be a sequence of r.v.ôs, such that for all 

numbers z, 

P(Zn Ò z) Ÿ ū(Z) as n Ÿ Ð

where ūis the standard normal cdf.

Here, Zn is said to have an asymptotic standard normal distribution

Zn ~ Normal(0,1)

i.e., cdf for Z approaches cdf for a standard normal distribution as n gets large

a



ÅCentral Limit Theorem

ïStates that the average from a random sample for any population with finite 

variance, when standardized, has an asymptotic standard normal distribution

ïLet {Y 1, é, Yn} be a random sample with mean µ and variance ů2.  Then

Zn = (ὣ- µ)/(ů/ ὲ)

has an asymptotic normal distribution.

ï Zn is the standardized version of ὣ
ÅSubtracted off E[ὣ] = µ

ÅDivided by sd(ὣ) = ů/ ὲ

ïThus, regardless of the population distribution of Y, Zn has mean zero and 

variance one

ïEquation above implies that

Zn = ὲ(ὣ- µ)/ů

ÅMultiplying by ὲensures the variance of Zn remains constant

Å If we just had (ὣ- µ)/ů, we know its distribution collapses to a single point as n Ÿ 

Ðéwhich we know cannot be a good approximation of the distribution for reasonable 

sample sizes



Å In addition to the standardized sample average above, many other 

statistics depend on sample averages that turn out to be 

asymptotically normal.  An important one is obtained by replacing 

ůwith its consistent estimator Sn

(ὣ- µ)/(Sn/ ὲ)

also has an approximate standard normal distribution for large n



Å Interval Estimation and Confidence Intervals

ÅA point estimate from a particular sample is not sufficient for testing 

hypotheses

ÅThe point estimate plus the s.d.provides more info on how good of 

a predictor the estimator actually is

ïYet, this still does not tell us where the population value is likely to lie in 

relation to our estimate

ïTo address this, we construct a confidence interval

ÅSuppose the population has a Normal(µ, 1) distribution and let {Y 1, 

é, Yn} be a random sample from this population.  The sample 

average distribution, therefore, is represented by 

ὣ~ Normal(µ, 1/n)



ÅFrom this, we can standardize ὣas follows

P(-1.96 < (ὣ- µ)/(1/ ὲ) < 1.96) = .95

note: we are choosing the ends in this interval to 

achieve a probability = .95éwe will return to this 

later

Å We can rewrite the above as follows

P(ὣ-1.96/ ὲ< µ < ὣ+ 1.96/ ὲ) = .95

Å Q. What is the interpretation?

Å This tells us that the probability that the random interval

[ὣ-1.96/ ὲ, ὣ+ 1.96/ ὲ]

contains the population mean µ is .95 (or 95%)



Å From this, we can construct an interval estimate of µ, which is obtained by 

plugging in the sample outcome of the average, ώ. Thus,

[ώ-1.96/ ὲ, ώ+ 1.96/ ὲ] (1)

is an example of an interval estimate of µ (aka a 95% CI).  Shorthand 

notation is

ώ±1.96/ ὲ

Å When we say that equation (1) is a 95% CI for µ, we mean that the random 

interval

[ὣ-1.96/ ὲ, ὣ+ 1.96/ ὲ] (2)

contains µ with probability .95.  That is, before the random sample is drawn 

there is a 95% chance that (2) contains µ.  Eqn(2) is referred to as an interval 

estimator.

Q. Why is this interval essentially a ñrandom intervalò?

Ans. B/c the endpoints change with different samples


