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A Sampling
I LetY be ar.v. representing a population with a pdf f(fy; which
depends on the single paramefer

T 1YY, ¥ ,are independemtv.swith a common pdf(y; d),
then {Y, Y,, ¥ )} is said to be a random sample fréfy; d)

-We also say that the, dre independent, identically
distributed ((d) r . \ronof(y; d).
A Finite Sample Properties of Estimators

I An estimator offis a rule that assigns each possible outcome of
the sample a value of

A This rule is specified before any sampling is carried out (i.e., the rule is the
same regardless of the data actually obtained)

I As an example of an estimator, {&t,, Y,, &} be a random
sample from a population with mean p.

I Q. What is a natural estimator of u?
I Ans. The sample average
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A More generally, an estimator W of a parameftean be
expressed as
W=h(Yy, Y, &)
for some known function of the . vyY.,,&s &,

A When a particular set of numbers, say yy € , Y.}, Is plugged
into h(A), we ddenodm=hgpéeyyt i

I Sometimes W is called a point estimator and w a point estimate

A Distribution of an estimator is called teampling distribution

T This describes the likelihood of various outcomes of W across different
random samples
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A Unbiasedness

I In principle, the entire sampling distribution of W can be obtained given
the probability distribution of Yand the function h.

A Usually easier to focus on a few features of the distribution W in evaluating it as an
estimator ofd

A Unbiased Estimator
I An estimator, W off, is an unbiased estimator if
E[W]=d
for all possible values af

I If an estimator is unbiased, then its probability distribution has an
expected value equal to the parameter it is supposed to be estimating
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A Q. Does unbiasedness mean that the estimate we get with any
particular sample is equal &

A Ans. No!

It means that if we could indefinitely draw random samples on Y
from the population, compute an estimate each time, and then
average these estimates over all random samples, we would
obtaind

A If W is biased, its bias is defined as

Bias(W)id E[ W]

A PdfofW,unbi asedéip
biased

pdf of W, ——— > <«——pdf of W,

6 = E(W,) E(W,) w
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A Sample averagéis an unbiased estimator of the population
mean

[insert proof]

A For hypothesis testing, we will also need to estimate the variat
U2 from a population with mean p.

i Letting{Y Y, &} denote the random sample from the population
with E[Y] = p andVar[Y] = 02, define the estimator as

52:(—)5 O 02

which is called the sample variance.

[insert proof that sample variance estimator is unbiased]
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AWhile unbiasedness has appea
has some weaknesses

I Some very good estimators are biased (will see examples soon)
I Unbiased estimators exist that are actually quite poor estimators

A Sampling Variance of Estimators

I Unbiasedness only ensures the sampling distribution of an estimator has
mean value equal to the parameter it is supposed to be estimating
A We also, however, want to know how spread out the distribution of the estimator is
A An estimator can be equaldpon average, but it can also be very far away with large
probability .
A Using W, as our estimator implies that
it is less likely we will obtain a randornr

sample that yields an estimate very fg
from d.

A To summarize situation in figure, we r pdf of W,
on the variance of an estimator /

pdf of W,
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A Variance of an estimator is called t@mpling variancebecause
It Is the variance associated with a sampling distribution

I Recall, the sampling variance is nat\a; it is a constant, but could be
unknown

A The variance of the sample average for estimating the mean
from a population is

Gow oof(-)B ©) (—)osB @)=

(—)E wow  (—)E . =(—)n )

= /n
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A In sum,
f{y . ;i= 1, 2, é, n} 1 s a rant
with mean p and variana®, thendhas the same mean as tl

population, but its sampling variance equals the populatior
varianceu?, divided by its sample size

A An important implication of Vartd) =,, /n is that it approaches
Zero as n gets large
I This is a key feature of a good estimator

A As evidenced by the figure above, we prefer estimators with th
smallest variance
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A This allows us to eliminate certain estimators from consideratio

A For a random sample from a population with mean p and variar
U2, we know thatias unbiased andar() =, /n

A Q. What about the estimatoy, Which is just the first observation
drawn?
I Because Yis a random draw from the population, Vay['¥ ,,

i Thus, the difference betwe&far(Y,) andVar(c) can be large even for
small samples

i Ifn=10, thervar(Y,) is 10 times as large &ar(w) =, /10
I This gives us a formal way of excluding & an estimator of L
i Letos | ook i1 nto GBTAIlsexample e cl| os el
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A Efficiency

i If Wy and W, are two unbiased estimatorsdhfW, is said to befficient
relative to Wwhen Var(W) O V) for afl dMwith strict inequality for
at least one value of

i Inour STATA example, Vatd < Var(X,) implies thatwis efficient
relative to X for estimating p

T If we restrict our attention to a certain class of estimators, we can show t
the sample average has the small
this for Mega HW #2)

I If we do not restrict focus to unbiased estimators, then comparing varian
IS meaningless

A E.g., when estimating population mean p we can use a trivial estimator that is equal tc
zero, regardless of the sample we draw

A Naturally, variance of this estimator is zero (b/c it is the same value for every sample)
A But, the bias of the estimatori®é so it i s a very poor es

MONTANA

STATE UNIVERSITY Mountains = Minds



A One way to compare estimators that are not necessarily unbias
IS to compute thenean squared error (MSE)of the estimators
i If W is an estimator off, then the MSE of W is defined as
MSE(W) = E[(Wi d)7].
I This measures how far, on average, the estimator is awaydfrom
I It can be shown that
MSE(W) = Var(W) + [Bias(W}
so that MSE(W) depends on the varianoé bias (if any is present)
I This allows us to compare two estimators when one or both are biased

[Work problems #3 and #4 from Appendix C]
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A Asymptotlc or Large Sample Properties

Reasonable to demand that an estimator improves as n gets large
A E.g &improves in that its variance decreases as n increases

We can rule out certain estimators by studying asymptotic or large samj
properties of estimators

Asymptotic analysis involves approximating the features of the sampling
distribution of an estimator

A ConS|stency

Concerns how far estimator is likely to be from the parameter of interest
n approaches D

Let W, be an estimator af based on a samplelWZ, ¥ ,of size n.
ThenW is aconsistent estimatorof d if for everyU> 0,

PW,id)>UY 0 as n Y b
Otherwise, we say thaV,, is inconsistent
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A Unlike unbiasedness (which is a feature conditional on a certai
sample size), consistency concerns the behavior of the samplil
distribution of the estimator as n gets large

A The equation on the previous slide means that the distribution
W, becomes more concentrated arodras n gets larger

fWU(W)
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A Consistency is a minimal requirement of an estimator for econometric
purposes

A Unbiased estimators are not neces
variances shrink to zero as n Y E

A Formally,
If W, is an unbiased estimatordfind Varfv,) Y O0Y fa,s tnhe
plim(W,)) =d
A Example

Consider the average of a random sample drawn from a
population with mean p and varianae

I We already know that this is unbiased
i And, we showed that Vaiy) = (?/n
I So, we clearly see that
Var(@) Y Y abs
Hence,is an unbiased and consistent estimator of
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A This brings us to theaw of Large Numbers (LLN)
LetY, & beiidr . withGrean yu. Then,
plim(cy,) = K
The LLN means that, if we are interested in estimating the population

average [, we can get arbitrarily close to u by choosing a sufficiently
large sample.

A It can also be shown that the sample varianges é—) B &® ®)3is
consistent fofi2

A Property Plim.1

Let d be a parameter and define a new parameteg(d), for some
continuousnc. g ( A) . @im(Vp ok Refine dnadtimatar by

G,=gW,). Then
plim(G,) =92
often stated as
plim g(W,) = g(plim W,) (Slutsky Theorem)
for a continuous function
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A Example.
SlutskyTheorem directly generalizes to a function of sevel
r . \as illustrated in the following example:

In random sampling from a population with mean p and
variancel?, the exact expected value-ef- would be

difficult, if not impossible to derive. But, by tl&utsky
Theorem,

plim(—) = p2/u?
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A Property Plim.2
If plim(T,)) = Uandplim(U,) = b, then

(i) plim(T,+ U,) =U+b
(ii) plim(T.U)=U b
(iii) plim(T,JU,) = Ub, providedd > 0

Example.

Let{Y, Y, &} bearandom sample of size n on annual earnings from the populatior
workers with a high school education and denote the population meanlat { ,, Z,, e,
Z.} be a random sample of size n on annual earnings from the population of workers witt
collegeeducation and denote the population meap,as

-Suppose we want to estimate the percentage difference in annual earnings b/v
two groupsp= 1 0,08)(O

-Becaused and® are consistent fqu, and i, respectively, it follows from the
Slutzky Thm. and (iii) from plim.2 that

G, = 100&% - &)/&
IS a consistent estimator of
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Asymptotic Normality

A Consistency is a property of point estimators
I Tells us that the distribution of an estimator is collapsing around the parameter as n gets lar
T But, it tells us little about the shape of the distribution of the estimator for a given sample siz

A For constructing interval estimators and testing hypotheses, we need a way ti
approximate estimator distributions

I Most econometric estimators have distributions that are closely approximated by a normal
distribution for large n

A Asymptotic Normality. Let{Z,, &} be a sequence of . ysuadh that for all
numbers z,

PZO zu(X%) as n Y D
whereu is the standard normadf.
Here, Z is said to have aasymptotic standard normal distribution
Z.2 Normal(0,1)
l.e., cdf for Z approacheesdf for a standard normal distribution as n gets la
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A Central Limit Theorem

I States that the average from a random samplanppopulation with finite
variance, when standardized, has an asymptotic standard normal distribt

i Let{Y, &} bearandom sample with mean p and variafceThen

Z,= (&~ W/(arE)
has an asymptotic normal distribution.

i Z,is the standardized version @f
A Subtracted off ED] = p
A Divided bysd®) = 0/\/E
I Thus, regardless of the population distribution of Yh@ mean zero and
variance one

I Equation above implies that
Z,=+E (©- W/

A Multiplying by v& ensures the variance of mains constant

A Ifwejusthad®-pw)/G, we know its distribution co
béwhich we know cannot be a good appr o
sample sizes
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A In addition to the standardized sample average above, many ot
statistics depend on sample averages that turn out to be
asymptotically normal. An important one is obtained by replaci

U with its consistent estimator S

(- WI(SIVE)

also has an approximate standard normal distribution for large
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A Interval Estimation and Confidence Intervals

A A point estimate from a particular sample is not sufficient for tes
hypotheses

A The point estimatplus the s.d.provides more info on how good of
a predictor the estimator actually is

I Yet, this still does not tell us where the population value is likely to lie in
relation to our estimate

I To address this, we construct@nfidence interval

A Suppose the population has a Normal(, 1) distribution af¥ lgt
é , Y } be arandom sample from this population. The sample
average distribution, therefore, Is represented by

&~ Normal(p, 1/n)
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A From this, we can standardigeas follows
P(-1.96 <(® p)/(14/€) < 1.96) = .95

note: we are choosing the ends in this interval to
achieve a probability =
later

A We can rewrite the above as follows

P(@1.96A/€ <p <@+ 1.964€)= 95
A Q. What is the interpretation?
A This tells us that the probability that the random interval
[(01.96A/E, W+ 1.964/€]

contains the population mean p is .95 (or 95%)
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A From this, we can construct an interval estimate of i, which is obtained by
plugging in the sample outcome of the averagd,hus,

[(01.96A/€, W+ 1.96A/E] (1)
IS an example of an interval estimate of p (aka a 95% CI). Shorthand
notation is
wt1.96+/€
A When we say that equation (1) is a 95% CI for |, we mean thaaridem
interval
[(01.96A/E, W+ 1.964/€] (2)
contains p with probability .95. That isefore the random sample is drawn

there is a 95% chance that (2) containEgn (2) is referred to as anterval
estimator.

Q. Why i1 s this iInterval essent.
Ans. B/c the endpoints change with different samples



