# ECNS 432 Ch. 12: Valuing Impacts with Experiments and Quasi-Experiments

- Chapter 12
  - EXTREMELY RELEVANT FOR MANY OFYOUR RESEARCH PAPERS!!!
    - When I ask you "what is your empirical model/method", I'm often referring to this stuff!

# **Experiments and Quasi-Experiments**

- CBAs of any intervention require comparisons b/w alternatives
  - The program/policy subject to evaluation is compared to a counterfactual (i.e. the situation that would exist w/o the program/policy)
  - Impacts are measured as differences in outcomes b/w the two situations
- <u>Internal validity</u>: Depends on the particular way in which the comparison b/w the program and the situation w/o the program is made

- External validity: Refers to how well results generalize
- Ex. RCTs in developing countries

- <u>Design 1:</u> Classical experimental design (somewhat of a gold standard)
  - Comparison of net changes b/w treatment and true control groups
- Structure

| Classical experiment          | Pre-observation | Treatment | Post-observation |
|-------------------------------|-----------------|-----------|------------------|
| Random assignment (treatment) | $O_1$           | X         | $O_2$            |
| Random assignment (control)   | $O_3$           |           | $\mathrm{O}_4$   |

- Example: Pilot project of an educational program with random assignment
  - Sex education courses
    - o Treatment (abstinence only)
    - o Control (general sex educ.)
- Advantages: Q. What does random assignment guard against?
- Ans. Systematic differences b/w control and treatment groups
- Disadvantages: Costly

Ethics of random assignment

External validity

- <u>Design 2</u>: Classical experimental design without baseline data
- Structure

| Classical experiment w/o baseline data | Pre-observation | Treatment | Post-observation |
|----------------------------------------|-----------------|-----------|------------------|
| Random assignment (treatment)          |                 | X         | $O_2$            |
| Random assignment (control)            |                 |           | $O_4$            |

- Advantages: Similar to Design 1
- Disadvantages: If random assignment is done incorrectly (i.e. not truly random), then no pre-treatment characteristics available to make statistical adjustments
  - Can be an issue when sample sizes are small

- Design 3: Before and After Comparison
  - No control group
  - No random assignment
- Structure

| Before/After comparison | Pre-observation | Treatment | Post-observation |
|-------------------------|-----------------|-----------|------------------|
|                         | $O_1$           | X         | $O_2$            |

Advantages: Often feasible

Relatively inexpensive

Reasonable when factors other than treatment are unlikely to affect outcome (think of a true exogenous shock)

- Disadvantages: Does not control for other factors that may cause the change (especially problematic when you cannot observe and, thus, control for detailed characteristics for the affected individuals, groups, etc.)
- Ex. Supply-side drug intervention (Dobkin and Nicosia 2009, AER)

- <u>Design 4:</u> Nonexperimental comparison w/o baseline data
- Structure

| Nonexperimental comparison w/o baseline data | Pre-observation | Treatment | Post-observation |
|----------------------------------------------|-----------------|-----------|------------------|
| Treated group                                |                 | X         | $O_1$            |
| Quasi-control group                          |                 |           | $O_2$            |

Advantages: Not much!

Feasible, cheap

- Disadvantages: Danger of sample selection bias caused by systematic differences b/w treatment and quasi-control group
- Ex. Compare marijuana use in CA (med. marijuana legal) with marijuana use in UT (med.marijuana illegal) based on post-medical marijuana legalization data.

- <u>Design 5</u>: Nonexperimental comparison w/ baseline data
- Structure

| Nonexperimental comparison w baseline data | Pre-observation | Treatment | Post-observation |
|--------------------------------------------|-----------------|-----------|------------------|
| Treated group                              | $O_1$           | X         | $O_2$            |
| Quasi-control group                        | $O_3$           |           | $O_4$            |

- Most often used technique to evaluate large scale policies where randomized trials would be prohibitively costly
- Advantages: Permits detection of *measurable* differences b/w treatment and quasi-control groups
  - -i.e. provides info on how groups differed prior to treatment
  - -Can control for "selection bias" based on *observable* characteristics

• Disadvantages: Sample selection bias is still an issue due to unobservables

#### FOR YOUR PAPERS

- Think about the type of experimental design that is feasible
- If using hypothetical data, then try to design the ideal experiment (if you had the time and resources available)